Good Approximations for the Relative Neighbourhood Graph

Diogo Vieira Andrade (PUC-Rio)
Luiz Henrique de Figueiredo (IMPA)
Outline

- Computational morphology
- The relative neighbourhood graph
- Computing the relative neighbourhood graph
- The Urquhart graph
- Results
- Conclusion
- Open problems
Computational morphology = computational extraction of perceptually meaningful structure from dot patterns.

Toussaint (1980) introduced RNG as tool for computational morphology.
The relative neighbourhood graph

\[S = \text{set of points in the plane.} \]

The edges in \(\text{RNG}(S) \) are defined by \(p, q \in S \) with empty \textit{lune}.

\[p \quad q \]
The relative neighbourhood graph

\(S = \) set of points in the plane.

The edges in \(\text{RNG}(S) \) are defined by \(p, q \in S \) with empty lune.

\[\text{RNG}(S) \subseteq \text{GG}(S) \subseteq \text{DT}(S) \]
Computing the relative neighbourhood graph

- Brute-force algorithm from definition takes time $O(n^3)$.
- Restriction to DT(S) gives extraction in time $O(n^2)$.

- Supowit (1983) extracts in time $O(n \log n)$.
- Jaromczyk & Kowaluk (1987) extract in time $O(n \alpha(n,n))$.
- Jaromczyk, Kowaluk & Yao (1991?) extract in time $O(n)$.

- Lingas (1994) extracts in time $O(n)$
 - simple algorithm, never implemented.
The Urquhart graph

- Idea by Urquhart (1980): test only Delaunay neighbours!
 - remove longest edge from each Delaunay triangle
 - common mistake!
 - new graph: Urquhart graph $\text{RNG}(S) \subseteq \text{UG}(S) \subseteq \text{GG}(S)$

- Toussaint (1980) proposed $\text{UG}(S)$ as approximation to $\text{RNG}(S)$

- Our theme: how good is this approximation?
 - How close is $\text{UG}(S)$ to $\text{RNG}(S)$?
 - compare number of edges.
 - Is $\text{UG}(S)$ good for computational morphology?
 - see pictures!
\[UG \neq RNG \]

\[
\begin{array}{c}
\bullet (3,4) \\
S \quad \bullet (0,0) \\
\bullet (0,1) \\
\end{array}
\]

\[
\begin{array}{c}
DT \\
\bullet (6,0) \\
\end{array}
\]

\[
\begin{array}{c}
RNG \\
\end{array}
\]

\[
\begin{array}{c}
UG \\
\end{array}
\]
Results: random points in a square
Results: random points in a square

RNG 1241 edges

UG 1263 edges
Results: random points in a square

RNG 1241 edges

UG 1263 = 1241 + 22 edges
Results: random points on a spiral
Results: random points on a spiral

RNG 1291 edges

UG 1301 edges
Results: random points on a spiral

RNG 1291 edges
UG 1301 = 1291 + 10 edges
Results: random point on line art: earth
Results: random point on line art: *earth*

RNG 1089 edges

UG 1116 edges
Results: random point on line art: earth

RNG 1089 edges
UG 1116 = 1089 + 27 edges
Results: random point on line art: *man*
Results: random point on line art: *man*

RNG 663 edges

UG 682 edges
Results: random point on line art: *man*

RNG 663 edges

UG \[682 = 663 + 19 \text{ edges} \]
Conclusion

- \(\text{UG}(S)\) good approximation to \(\text{RNG}(S)\):
 - only about 2\% additional edges for random samples

- Easy to extract \(\text{UG}(S)\) from \(\text{DT}(S)\) in linear time.

- Good, free, robust, optimal implementations of \(\text{DT}(S)\) at \textit{netlib}:
 - \textit{Triangle}, by Jonathan Richard Shewchuk
 - \textit{sweep2}, by Steve Fortune
Open problems

- Compare implementations
 - Supowit (1983)
 - Lingas (1994)

- Probabilistic results à la Devroye (1988):
 - $E_{GG}(N) \sim 2N$
 - $E_{RNG}(N) \sim (1.27 + o(1))N$
 - $E_{UG}(N) \sim \text{??? } N$
Thanks

- Godfried Toussaint
- Therese Biedl
- CNPq (Brazilian agency)
- You all for your attention!