Robust Adaptive Polygonal Approximation of Implicit Curves

Hélio Lopes (PUC-Rio)
João Batista Oliveira (PUC-RS)
Luiz Henrique de Figueiredo (IMPA)
Given $f: \Omega \subseteq \mathbb{R}^2 \to \mathbb{R}$, compute adaptive polygonal approximation of the curve given implicitly by f: $\mathcal{C} = \{(x, y) \in \mathbb{R}^2 : f(x, y) = 0\}$.

Goal: Spatial and geometric adaption.
A Solution: Enumeration

- Decompose \(\Omega \) into grid of small cells — How small?
- Locate \(C \) by identifying cells that intersect \(C \) — What criteria?

\[
f(x, y) = y^2 - x^3 + x
\]

Full enumeration is expensive and not robust.
Adaptive Enumeration

Spatial adaption

Geometrical adaption
The Tools

- Oracles
 - Is this cell away from the curve?
 - Is the curve approximately flat inside the cell?

- Interval arithmetic
 - Robust interval estimates for f and ∇f
 \[
 X \subseteq \Omega \Rightarrow F(X) \supseteq f(X) = \{f(x, y) : (x, y) \in X\}
 \]
 - $0 \notin F(X) \Rightarrow$ cell X is away from curve

- Automatic differentiation
 - Efficient gradient computation
Robust Adaptive Enumeration

- Recursive exploration of domain Ω starts with $\text{explore}(\Omega)$.
- Discard subregions X of Ω when $0 \notin F(X)$. This is a proof that X does not contain any part of the curve C.

\[
\text{explore}(X): \\
\quad \text{if } 0 \notin F(X) \text{ then} \\
\quad \quad \text{discard } X \\
\quad \text{elseif } \text{diam}(X) < \varepsilon \text{ then} \\
\quad \quad \text{output } X \\
\quad \text{else} \\
\quad \quad \text{divide } X \text{ into smaller pieces } X_i \\
\quad \quad \text{for each } i, \text{explore}(X_i)
\]

- All output cells have the same size. Only spatial adaption.
Robust Adaptive Approximation

- Estimate curvature by gradient variation.
- G := inclusion function for the normalized gradient of f.
- $G(X)$ small \Rightarrow curve approximately flat inside X.

explore(X):
 if $0 \notin F(X)$ then
 discard X
 elseif diam(X) $< \varepsilon$ or diam($G(X)$) $< \delta$ then
 approx(X)
 else
 divide X into smaller pieces X_i
 for each i, explore(X_i)

- Output cells vary in size. Spatial and geometrical adaption.
Interval arithmetic

- Quantities represented by intervals:
 \[x = [a, b] \Rightarrow x \in [a, b] \]

- Primitive operations:
 \[
 [a, b] + [c, d] = [a + c, b + d] \\
 [a, b] \times [c, d] = [\min\{ac, ad, bc, bd\}, \max\{ac, ad, bc, bd\}] \\
 [a, b] / [c, d] = [a, b] \times [1/d, 1/c] \\
 [a, b]^2 = [0, \max(a^2, b^2)], \quad a \leq 0 \leq b \\
 = [\min(a^2, b^2), \max(a^2, b^2)], \quad \text{otherwise} \\
 \exp [a, b] = [\exp(a), \exp(b)].
 \]

- Automatic extensions:
 \[x_i \in X_i \Rightarrow f(x_1, \ldots, x_n) \in F(X_1, \ldots, X_n) \]

- Several good implementations available in the Web
Automatic differentiation

- Symbolic differentiation: exact, complex, slow
- Numerical differentiation: approximate, ill-conditioned
- Automatic differentiation: exact, well-conditioned, fast
- Operates on tuples \((u_0, u_1, \ldots, u_n)\),
 \[u_i = \frac{\partial u}{\partial x_i} \bigg|_{x_i=a_i} \]

\[
\begin{align*}
(u_0, u_1, u_2) + (v_0, v_1, v_2) &= (u_0 + v_0, u_1 + v_1, u_2 + v_2) \\
(u_0, u_1, u_2) \cdot (v_0, v_1, v_2) &= (u_0v_0, u_0v_1 + v_0u_1, u_0v_2 + v_0u_2) \\
\sin(u_0, u_1, u_2) &= (\sin u_0, u_1 \cos u_0, u_2 \cos u_0) \\
\exp(u_0, u_1, u_2) &= (\exp u_0, u_1 \exp u_0, u_2 \exp u_0)
\end{align*}
\]

- Automatic extensions
- Several good implementations available in the Web
- Operate with intervals and get estimates for gradient!
Results

Large white cells = spatial adaption

Large red cells = geometrical adaption
Results: Two circles
Results: Two circles

341 boxes, 64 leaves

2245 boxes, 464 leaves

efficiency: 6.6 for boxes, 7.2 for leaves
Results: Bicorn
Results: Bicorn

453 boxes, 94 leaves

1717 boxes, 300 leaves

efficiency: 3.8 for boxes, 3.2 for leaves
Results: “Clown smile”
Results: “Clown smile”

709 boxes, 164 leaves

1781 boxes, 414 leaves

efficiency: 2.5 for boxes, 2.5 for leaves
Results: Pear
Results: Pear

237 boxes, 60 leaves

1773 boxes, 348 leaves

efficiency: 7.5 for boxes, 5.8 for leaves
Results: Cubic
Results: Cubic

709 boxes, 128 leaves
1341 boxes, 262 leaves

efficiency: 1.8 for boxes, 2.0 for leaves
Results: Pisces logo
Results: Pisces logo

2621 boxes, 280 leaves
efficiency: 1.7 for boxes, 1.7 for leaves

4477 boxes, 488 leaves
Results: Mig outline
Results: Mig outline

7457 boxes, 425 leaves

12121 boxes, 622 leaves

efficiency: 1.6 for boxes, 1.5 for leaves
Results: Curve from Taubin’s paper
Results: Curve from Taubin’s paper

4505 boxes, 233 leaves

9161 boxes, 446 leaves

efficiency: 2.0 for boxes, 1.9 for leaves
Conclusion

- Robust adaptive approximation of implicit curves
- First algorithm to combine spatial and geometrical adaption
- Can use cache trees for speed when generating multiple level curves

Future work

- Surfaces?
 - difficult topological problems
- Use affine arithmetic to reduce overestimation
- Piecewise cubic approximation
 - Hermite formulation
 - no need to test gradient variation inside whole cell
 - need to test values over whole cubic segment