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Offsets

The r-offset of a plane curve I":
OZ{pGRQZd(p,I_)Ir}
Distance of point to curve:

d(p,) = min{d(p,q) :q €'}

Finding offset curves is a global problem.



Offsets are complicated

J.-H. Lee, S. J. Hong, M.-S. Kim, The Visual Computer (2000) 16:208-240.



Local formulation

Curve ™ given as the trace v (1) of a parametric curve ~v: I — R2.
Distance of point to curve:

d(p,) = min{d(p,~(t)) : t € I}.
Global minimization problem on interval 1. Too hard.
Local formulation: measure distance to v along its normal.
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Local formulation does not always work

Works well only when offset radius r is small. But how small?
Need trimming step [Farouki and Neff 1990].

Our approach:
Robust approximations with interval arithmetic. No trimming.



Range analysis

Range analysis is the study of the global behavior of real functions based
on estimates for their set of values.

Given f: 2 C R™ — R, range analysis provides inclusion function for f:

F(X)D f(X)={f(z):z€ X} XCQ

Range estimates are useful for global optimization:
F(X)2D f(X)=min F(X) <min f(X)
r<min F(X) = r < f(x) forall pointsx € X

r>max F(X) = r > f(x) forall pointsx € X

Interval arithmetic is the natural computational tool for range analysis.



Interval arithmetic

e Quantities represented by intervals:
xr = [a,b] = x € [a, b]

e Primitive operations:

la,b] + [c,d] =[a + ¢, b+ d]
[a, b] X [c,d] = [min{ac, ad, bc, bd}, max{ac, ad, bc, bd }]
[a,b] / [c,d] = [a,b] x [1/d,1/c]
[a, b]? = [0, max(a?, b2)], a<0<b
= [min(a?,b?), max(a?,b%)],  otherwise
exp [a, b] = [exp(a), exp(b)].

e Automatic extensions:
x; € X; = f(x1,...,2n) € F(X1,...,Xn)

e Several good implementations available in the Web.



Range analysis and global geometric processing

e Recursive exploration of domain <2.

e Discard subregions X of €2 when we can prove that X does not
contain any part of the offset O (proof uses range estimates!).

explore(X):

If X does not contain a part of O then
discard X

elseif X is small enough then
output X

else
divide X into smaller pieces X;
for each ¢, explore(X;)

Start with explore(<2).

Generate quadtree decomposition of €2 when €2 is a rectangle.
Compute guaranteed approximation of O.

Crucial step: testing whether X is empty.



Robust adaptive approximation of offset — quadtree decomposition
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Robust approximation of offsets — testing for emptiness

test(X,T,r):

if max D(X,T) < r then
return true

if min D(X,T) > r then
return false

if diam G(T") < e then
all «— false
return false

else
bisect T into T and 15
return test(X, Ty, r) V test(X, T, )

empty(X, r):
all < true
return test(X, I, r) Vv all

Like interval global optimization, but needs not find global minimum.



Robust approximation of offsets — main algorithm

explore(X):

if empty(X, r) then
discard X

elseif diam(X) < e then
output X

else
divide X into four equal pieces X;
for each ¢, explore(X;)

e Start with explore(£2).
e Perform adaptive exploration of €2.
e Quickly discard empty subregions.

e Work harder near O.

Cache trees store evaluations of G(T).



Robust adaptive approximation of offset

g Th I
T~ {\ T
\ e LT

N
: +i
)







Cache trees

e Interval estimates D(X,T) and G(1") may dominate cost.
e GG(T) used twice in test(X, T, r) but G(T') does not depend on X.

e Cache values of G(T') in a binary tree and re-use them.

e Root of tree correspondsto T = 1.

e Each node contains G(T') and pointer to children nodes,
corresponding to 77 and 15, the two halves of T'.

e Reduce overestimation by updating estimates from the bottom up.

The cache tree is a dynamic adaptive representation of v on I: it
summarizes the behavior of ~ at various resolution scales, and gets
locally refined as needed when X varies.

e Approximation in previous figure needed 220089 evaluations of GG, but
cache contained 218618 of these; only 1471 fresh evaluations were
required (less than 1%).



Point/curve bisectors

The bisector of a point pg and plane curve I":

B={pecR?:d(p,l) =d(p,po)}

Trivial to modify offset algorithm to compute bisectors:

test(X,T,r):
if max D(X,T) < min D(X, pg) then
return true
if min D(X,T) > max D(X, pg) then
return false

No overestimation in D(X, pg), because variables = and y occur only
once in d(p, pg).



Examples of point/curve bisectors
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Conclusion

Robust adaptive approximation of offsets and bisectors.
Works for non-smooth curves: no normal vector required.

Works even for discontinuous curves: just need inclusion functions for
each piece.

No need for trimming.
Need to reconstruct curves from box approximation.

Uses cache trees for speed.

Future work

¢ Curve/curve bisectors and medial axes.

¢ Adaptively sampled distance fields (ADFs) for parametric curves.
¢ Use affine arithmetic to reduce overestimation.

o Surfaces?



